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Abstract: Species conservation risk assessments require accurate, probabilistic, and biologically meaningful

maps of population distribution. In patchy populations, the reasons for discontinuities are not often well

understood. We tested a novel approach to habitat modeling in which methods of small area estimation were

used within a hierarchical Bayesian framework. Amphibian occurrence was modeled with logistic regression

that included third-order drainages as hierarchical effects to account for patchy populations. Models including

the random drainage effects adequately represented species occurrences in patchy populations of 4 amphibian

species in the Oregon Coast Range (U.S.A.). Amphibian surveys from other locations within the same drainage

were used to calibrate local drainage-scale effects. Cross-validation showed that prediction errors for calibrated

models were 77% to 86% lower than comparable regionally constructed models, depending on species. When

calibration data were unavailable, small area and regional models performed similarly, although poorly.

Small area estimation models complement wildlife ecology and habitat studies, and can help managers

develop a regional picture of the conservation status for relatively rare species.
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Modelos Bayesianos de Área Reducida para Evaluar el Riesgo de Conservación de Vida Silvestre en Poblaciones
Fragmentadas

Resumen: Las evaluaciones de riesgo de conservación de especies requieren de mapas precisos, proba-

biĺısticos y biológicamente significativos de la distribución de la población. En poblaciones fragmentadas, las

razones de las discontinuidades a menudo no son bien entendidas. Probamos un nuevo método para modelar

hábitats en el que se usaron métodos de estimación de áreas pequeñas en un marco Bayesiano jerárquico.

La ocurrencia de anfibios fue modelada con regresión loǵıstica que incluyó escurrimientos de tercer orden

como efectos jerárquicos para explicar las poblaciones fragmentadas. Los modelos que incluyeron los efectos

de los escurrimientos aleatorios representaron adecuadamente la ocurrencia de especies en poblaciones frag-

mentadas de cuatro especies de anfibios en la Cordillera Costera de Oregon (E.U.A.). Utilizamos muestreos de

anfibios en otras localidades en el mismo escurrimiento para calibrar los efectos del escurrimiento a escala

local. La validación cruzada mostró que los errores de predicción para los modelos calibrados fueron entre

77% y 86% menores que los modelos comparables construidos regionalmente, dependiendo de la especie.

Cuando no se disponı́a de datos de calibración, los modelos de áreas pequeñas y regionales funcionaron

similarmente, aunque pobremente. Los modelos de estimación de áreas pequeñas complementan los estudios

de ecoloǵıa y hábitat de vida silvestre, y pueden ayudar a que los manejadores desarrollen una visión regional

del estatus de conservación de especies relativamente raras.
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Introduction

Most wildlife species have patchy, discontinuous popula-
tions (Wiens 1976) that are not often well represented by
broad-scale, regionally constructed habitat models (Cush-
man et al. 2008). These regional models do not have the
flexibility to incorporate factors influencing distributions
that are often highly spatially variable across the region of
interest; examples include inconsistent historical effects
(e.g., disease or stream sedimentation), patchy predator
distributions (Knapp et al. 2003), or localized geomor-
phology (Russell et al. 2004). There is little hope for
developing regional models that account for all of the
cumulative effects that commonly result in discontinu-
ous, patchy distributions. Funding is limited and models
cannot be developed for each species within each local
area. Models that do not account for patchy populations,
in effect, apply regional averages to predict highly vari-
able local conditions.

One alternative is to combine regional and local scales
through small area estimation (SAE) techniques (Rao
2003). Small area models have been used to help pre-
dict average income for small municipalities when sam-
ple coverage was sparse (Fay & Herriot 1979), to esti-
mate crop coverage of counties, and are widely used in
epidemiology (Ghosh & Rao 1994). The small areas are
commonly defined as cities, counties, or even states, de-
pending on the objectives. These SAE methods develop
regional models as a collection of smaller areas to bet-
ter reflect local conditions (Rao 2003). The small areas
(third-order drainages in our context) are related through
a common, higher-level process that allows consistent
predictions and substantially better parameter estimates
for local areas with scant data (Rao 2003). Furthermore,
SAE models can incorporate local survey data to help
make better predictions at local scales.

A more common approach to account for patchy
wildlife populations is to directly model spatial autocorre-
lation (Augustin et al. 1996; Knapp et al. 2003). Small area
models do not necessarily consider the spatial structure
of the population (i.e., spatial correlation between neigh-
boring small areas) and can therefore be developed with
less data. Small area models may also be preferred where
adjacent small areas are expected to be independent.

Our objective was to test the suitability of SAE mod-
els for characterizing patchy amphibian populations in
the Oregon Coast Range to help assess possible risks to
their conservation. Managers need reliable estimates of
wildlife abundance because misidentifying areas as hav-
ing locally high or low populations can lead to inefficient
conservation efforts or missed opportunities. We also ex-
amined situations in which SAE models might suggest dif-
ferent conservation approaches compared with regional
models.

We considered Pacific giant salamanders (Dicamp-

todon tenebrosus), larval and adult tailed frogs (Asca-

phus truei), southern torrent salamanders (Rhyacotriton

variegatus), and Columbia torrent salamanders (Rhya-

cotriton kezeri). Pacific giant salamanders are relatively
common. Torrent salamanders and tailed frogs are fed-
erally listed species of concern (FEMAT 1993) and have
patchy distributions across their range (Welsh & Lind
1996), which makes information on local populations es-
pecially important. The SAE models incorporated local
survey information from a drainage to help make better
predictions for unsurveyed areas. We used a hierarchical
Bayesian approach to provide a probabilistic interpreta-
tion of the results (Gelman & Hill 2007). The combined
Bayesian and SAE approaches provided the necessary in-
formation for risk assessment, a critical but underutilized
technique for species conservation.

Methods

Study Area and Amphibian Surveys

The study area encompassed Bureau of Land Management
(BLM) lands along the eastern side of the Oregon Coast
Range (U.S.A.). This region has a moist and cool maritime
climate, with a prolonged summer drought. The area is
within the Tsuga heterophylla zone (Franklin & Dyrness
1973), and the forests were predominately Psuedotsuga

menziesii, with significant components of Tsuga hetero-

phylla, Thuja plicata, Alnus rubra, Acer macrophyllum,
and other minor species. We sampled headwater streams
primarily in second-growth forests regenerated following
logging and burning or in younger plantations. Headwa-
ter streams with intermittent or perennial stream flow
were common. Riparian areas around these streams of-
ten had more deciduous trees than bordering stands and
a diverse shrub and herbaceous component.

We surveyed 4 amphibian species within 16 third-order
drainages randomly chosen from BLM lands of the Eugene
and Salem districts. Drainages were 90 to 200 ha, with
midpoint elevations between 200 and 660 m. Within each
drainage, we surveyed amphibians at 35 to 50 randomly
chosen 2-m-long stream sections (sample points) that had
intermittent or perennial surface flow ≤ 0.5 m deep.
Surveys followed standard protocols for area-constrained
searches (Bury & Corn 1991). We grouped sample points
into stands on the basis of age class of the adjacent forests
(classes: 0–15, 16–55, 55–105, and >105 years). Stands
contained between 1 and 34 sample points (mean 4.6).
Drainages contained between 3 and 15 stands (mean 9.6).
We surveyed 702 sample points across 153 stands in the
summers of 1998 and 1999. Sample locations were ran-
domly assigned to early, mid, and late summer to avoid
possible seasonal bias (Stoddard & Hayes 2005).

Habitat was characterized at the stand and drainage
scales from digital elevation maps (DEMs) and aerial pho-
tographs. Covariate selection was guided by the analyses
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of Stoddard and Hayes (2005), who identified biologically
relevant habitat variables for these species. At the stand
scale these included heat index (heat) and the stream gra-
dient (grad) averaged across all sample points. The heat
index was calculated as [1-cos(aspect – 45)]/2, which
scaled from 0–1 (near 0, low solar insolation [north,
northeast aspect]; near 1, higher levels [south, south-
west aspect]). We used a categorical variable to indi-
cate the presence (1) or absence (0) of a buffer ≥46
m wide of older forest (>55 years) on both sides of
the stream (stbuf). This buffer width corresponded to
the riparian buffer for permanently flowing nonfish bear-
ing streams under the Northwest Forest Plan for fed-
eral ownerships (FEMAT 1993). The relative elevation
of each stand within a drainage (stelev) was computed
as the elevation difference between the stand and the
midpoint elevation of the drainage. At the drainage scale,
variables included the percentage of the drainage with
slope ≥60% (slope), midpoint elevation (delev), and per-
centage of drainage area containing young (<15 years)
stands (%young). Road density (roads) was kilometers
of roads per hectare. Drainage aspect (aspect) was the
DEM-calculated average aspect of sample points along the
mainstem and was cosine transformed. Finally, we com-
puted the percentage of the drainage with an older forest
(>55 years) buffer at least 46 m wide on both sides of
the stream (%dbuf). Several drainage-scale variables were
included because they were expected to be indicative of
disturbance history; for example, stream sedimentation
is expected to be correlated with road density, average
slope, and harvest intensity (Jones et al. 2000). Fine-scale
habitat variables measured at the 2-m sample points were
initially considered, but excluded from the analysis for
reasons detailed later.

Presence or absence in each 2-m stream section was
recorded for Pacific giant salamanders, larval, and adult
tailed frogs, southern torrent salamanders, and Columbia
torrent salamanders. The torrent salamander species
were geographically separate but have similar habitat as-
sociations (Welsh & Lind 1996), so we combined them
for analyses. At least one species was found at 59% of
the stream sections. The mean probability of occurrence
across all 702 sample points was 0.53, 0.095, 0.162, and
0.046 for giant salamanders, torrent salamanders, and lar-
val and adult tailed frogs, respectively. A complete de-
scription of the study area and sampling methods is in
Stoddard and Hayes (2005).

Bayesian Modeling

We used a hierarchical Bayesian model to analyze
presence–absence data for amphibians (Wade 2000; Gel-
man et al. 2003; Gelman & Hill 2007). At the stand scale
we used binomial regression to characterize a habitat
model:

Yijk ∼ binomial(pijk, nijk), (1)

where Yijk is the number of sample points with species i

present in stand j and drainage k. The number of sample
points within a stand is nijk. The probability of occur-
rence (p) was modeled with a logit link function:

logit(pijk) = β0i + αik + β1i(gradjk) + β2i(stelevjk)

+ β3i(stbuf jk) + β4i(heatjk). (2)

Drainage-scale effects were included as higher-level co-
variates and modified the intercept (β0) in a hierarchical
manner,

αik ∼ MVN(μ,�), (3)

where the drainage means (μik) were assumed dis-
tributed multivariate normal (MVN). These means were
modeled as a function of drainage-scale covariates:

μik = γ1i(slopek) + γ2i(%dbufk) + γ3i(delevk)

+ γ4i(roadsk) + γ5i(%youngk) + γ6i(aspectk). (4)

The variance–covariance matrix � was given a nonin-
formative Wishart prior with 4 df, equal to the number of
parameters (Gelman et al. 2003). The scale of the prior
variances was set to 0.5 on the basis of a separate analysis
with a generalized mixed linear model, whereas the scale
of the prior covariances was set to zero. The model was
relatively insensitive to the scale of the prior variances
within a somewhat narrow range of 0.05 to 1. Nonin-
formative priors were specified for all other parameters
(β0−4 and γ1−6) as ∼ N(0, 0.001), specified with preci-
sions (1/σ 2). Model parameters (β, γ, and �) were given
prior distributions, as required for all Bayesian analyses.
These priors were updated with data and Bayes theo-
rem and resulted in the posterior distributions for the
parameters (i.e., parameter estimates). For comparison,
a nonhierarchical regional model was fitted that did not
include random drainage effects (αik), but that retained
the same stand- and drainage-scale covariates.

All noncategorical habitat variables, with the excep-
tion of aspect, were standardized prior to analysis by
subtracting the mean and dividing by the standard de-
viation. Bayesian analyses are scale independent, so the
standardization only influenced the parameter interpre-
tation. Standardized parameters are interpreted as the
change in probability expected (on the logit scale) for a
one standard deviation change in the value of the habitat
covariate (Gelman et al. 2003).

All analyses were done with WinBUGS 1.4.1 (Lunn
et al. 2000), which uses a Markov chain Monte Carlo
(MCMC) approach to characterize the posterior distribu-
tions (Gelman et al. 2003). We based results on 100,000
MCMC simulations and retained every 10th sample to re-
duce autocorrelation following a 20,000 iteration tuning,
or “burn-in” period, for the Markov chain to converge
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to the target (i.e., posterior) distribution. Habitat covari-
ate selection was guided by a lowest deviance informa-
tion criterion (DIC) to select a parsimonious model with
high predictive ability. Model selection was performed
in a stepwise manner, with covariates dropped first that
had estimates closest to zero. Covariates were retained
if their 95% credibility interval (CI; Bayesian equivalent
to the confidence interval) did not overlap with zero.
The change in DIC was also assessed before dropping a
covariate.

The final model with the MVN structure (�) as indi-
cated had the lowest DIC of alternative options. Model
convergence and fit were checked with multiple MCMC
simulations and posterior predictive checks, respectively
(Gelman et al. 2003).

Drainage-scale covariates were incorporated as a hi-
erarchical effect; therefore, γ1−6 were constant across
drainages, similar to fixed effects in a mixed linear model.
In a hierarchical model, these effects are interpreted in
a very specific way. Heuristically, the variances, σ2

αi ,
estimate the additional “spread” or deviation of stands
from the same drainage beyond that explained by the
drainage-scale covariates. If the drainage-scale covariates
explain all the drainage-scale mean differences (condi-
tioned on the stand-scale covariates), then σ2

αi = 0 and the
model collapses into a nonhierarchical model with stand-
and drainage-scale covariates. These additional deviations
from the drainage means (μik) were computed during
the MCMC simulations as devik = αik – μik, and rep-
resent local drainage effects. Species correlations were
computed from � and estimate the correlation among
deviations (devik) between species within a drainage. A
positive correlation indicated that drainages appearing
to be of better quality than the drainage-scale covariates
predicted for one species also tended to be better for the
other species, and vice versa.

Fine-scale habitat variables measured at the 2-m sample
points, such as stream width, percent undercut bank,
and coarse woody debris were investigated as potentially
useful predictors. First, we used a variance components
model to partition the total variance of each fine-scale
habitat variable into drainage, stand, and residual (i.e.,
within stand) sources. Second, we averaged fine-scale
covariates at the stand scale, included them in the model
(Eq. 1), and assessed their predictive ability with DIC.

We used a hierarchical Bayesian model to fit Eq. 1 for
several reasons. First, such models are difficult to im-
plement with frequentist methods, such as mixed linear
models (Gelman & Hill 2007). Second, Bayesian model
predictions for new stands are interpreted probabilisti-
cally, which is necessary for risk assessment. Finally, the
model structure connects species at the drainage scale
through �, which can result in better predictions for one
species when data from a drainage are available for any of
the 4 species (see Wilson et al. [2008] for an example).

Cross-Validation

We used cross-validation to compare the regional and
SAE approaches. The models are intended for use by
managers to make stand-scale predictions within new
drainages; therefore, we used cross-validation to assess
model accuracy and precision under this scenario. For the
regional and SAE approaches, we sequentially excluded
all data from a single drainage and fitted the models to
this reduced data set, for a total of 16 simulations (reflect-
ing the number of drainages). For the regional model,
species occurrence predictions were made for stands in
the excluded drainage directly from the estimated model
parameters. For the SAE model, the available survey data
within the excluded drainage were used for model cali-
bration (i.e., estimating devik). That is, for an excluded
drainage with survey data available for 10 stands, 9 were
used for calibration, and predictions were made for the
remaining stand with the calibrated model. Predictions
were made sequentially in this manner for all 153 stands.
No other parameters (i.e., β, γ, or σ2

α) were affected
by this calibration. New predictions were made simul-
taneously with model fitting in WinBUGS and used the
MCMC posterior distributions for the model parameters.
For comparison, predictions were also made for an un-
calibrated SAE model (devik = 0, which is the average
value across drainages).

The regional and SAE models were fitted to exactly
the same data in the cross-validation, with the only dif-
ference being the SAE model used additional survey data
for calibration. The regional models have no direct capac-
ity for incorporating the additional survey data within a
drainage. That is, regional models will make the same
predictions for a stand, regardless of whether neigh-
boring stands are known to have abnormally higher or
lower amphibian abundances. The SAE models made use
of this additional information in the calibration (Lappi
1991). The SAE model calibration incorporated the max-
imum amount of available data, so it represented a best-
case scenario. We computed average prediction error
(Yi − Ŷi)2, bias (Yi − Ŷi), and absolute prediction differ-
ences |Yi − Ŷi | from the observed (Y) and mean predicted
(Ŷ ) occurrences for each species. Further, variance pre-
dictions σ2

α′i from the reduced data sets (15 drainages
each) were compared with results from the full data set
in a sensitivity analysis.

Simulations

One objective was to illustrate the use of local survey
information within a regional habitat model. Local in-
formation (i.e., surveyed stands within a drainage) was
simulated for new drainages with varying levels of addi-
tional local information. That is, a variable number (0–15)
of new surveyed stands were included within a drainage
with nijk = 10 and constant pijk for a species (pijk = 0.5,
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0.1, 0.2, and 0.1 for giant salamanders, torrent salaman-
ders, and larval and adult tailed frogs, respectively). The
simulations were performed simultaneous to model fit-
ting in WinBUGS with the MCMC posterior distributions
for the model parameters. We used the “cut” function
within WinBUGS to isolate parameter estimates fitted by
the model from the simulated data.

As the amount of survey data within a drainage in-
creased, the precision of the predicted local devik effects
increased. We assessed how practical the SAE models
were by examining how steeply the precision increased
with additional stands available for calibration. Precision
was judged by the standard errors of the devik predic-
tion, which were computed directly from the posterior
distribution on the logit scale. Because local devik effects
were conditional on the stand and drainage covariates,
these were assigned known values as follows. Stand-scale
covariates (on standardized scales) were grad, 0; stelev, 0;
and stbuf, 1. Drainage-scale standardized covariates were
slope, 0.25; %dbuf, −0.25; delev, 0; %young, 0.25; and
aspect, 0.25. Predictions for species in the new stands
were presented probabilistically as the predicted mean
number of occurrences out of 10 randomly selected sur-
veyed points. These predictions are given as a distribu-
tion of possible results in a Bayesian analysis. This aids
with risk assessment because it shows the likelihood of
a high or low population, rather than simply presenting
a point (i.e., mean) prediction. We also examined how
local survey information could alter management deci-
sions by comparing regional and local model predictions
for several of the 153 surveyed stands. To illustrate the
typical differences, we made predictions for each species
in drainages with average, high, and low predicted local
effects. We used the actual stand- and drainage-scale co-

Figure 1. Posterior distributions

for (a) estimated local effects

(devik) and (b) drainage effects

(α ik) for each species, shown as

modified box plots on the logit

scale. The center line indicates the

median value. Bar ends are the

25th and 75th percentiles. The

solid lines span the 95% credibility

intervals for the predictions. The

vertical dashed line at zero is the

regional average for each species.

Species are ordered as indicated by

arrows for each drainage.

Alternating gray shading was used

to help distinguish drainages.

Abbreviations: PGS, Pacific giant

salamander; TS, torrent

salamander; LTF larval tailed frog;

ATF, adult tailed frog.

variates from a randomly selected stand in each drainage
and estimated the probability of finding 0–10 individuals
at 10 sample points within the stand.

Results

Local Habitat Models

The small area models adequately represented these
highly patchy amphibian populations. The final model
accounted for 25% of the residual deviance over a null
(intercept only) model, with an adjusted R2 of 0.34
(Nagelkerke 1991). Incorporating the MVN error struc-
ture showed a slight improvement in model fit indicated
by a 4.2-point drop in DIC versus a non-MVN error. Pos-
terior predictive checks showed good agreement with
survey data, and residuals were adequately distributed.
The sensitivity analysis showed the estimated drainage
variances with a single-drainage excluded, which were
all within the 95% CI of σαi estimated with the full data
set.

Predicted drainage effects varied between −2.0 and 2.6
on the logit scale for adult tailed frogs (Fig. 1b), indicat-
ing large differences in drainage-scale abundance. Other
species showed a similar range. For reference, predicted
effects of 3 and −3 on the logit scale result in changes on
the probability scale from 0.5 to 0.95 and 0.05, respec-
tively. A substantial portion of the drainage effects was
due to extra deviation not accounted for by the drainage-
scale covariates, which was indicated by the relatively
large variances, σ2

αi . These deviations from the mean
drainage effects were interpreted as local drainage effects
(devik) with standard deviations on the logit scale (σαi)
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Table 1. Cross-validation results to compare model precision and accuracy between the small area estimation and regional modeling approaches
for predicting amphibian occurrence.a

Mean prediction error Mean absolute difference Mean bias

Speciesb regional SAE SAE uncalibrated regional SAE regional SAE

PGS 1.725 0.241 1.858 0.967 0.389 −0.006 0.041
TS 0.778 0.140 0.813 0.514 0.251 0.070 −0.017
LTF 0.679 0.155 0.685 0.529 0.281 −0.008 −0.018
ATF 0.227 0.047 0.254 0.249 0.120 0.005 −0.017

aPrediction error = (Yi − Ŷi)2, absolute difference = |Yi − Ŷi|, and bias = (Yi − Ŷi) for the ith species. The regional model omitted local

drainage effects. Calibrated small area estimation (SAE) model, with local drainage effects (devik) estimated with available survey information

within the same drainage. Uncalibrated SAE model, with devik set to the regional average (devik = 0).
bAbbreviations: PGS, Pacific giant salamander; TS, torrent salamander; LTF, larval tailed frog; ATF, adult tailed frog.

between 0.49 and 1.05 for the different species (Table 2).
If these local effects were insignificant or nonexistent,
then σ2

αi would be close to zero. The direction of local
drainage effects was consistent across all species, with
correlation coefficients between 0.29 and 0.66.

The SAE model appeared superior to a regional model
that omitted random drainage effects (i.e., local effects)
but retained the stand- and drainage-scale covariates. The
SAE model showed a 42-point drop in DIC over the non-
SAE approach (with the full data set). Cross-validation
also showed lower prediction errors for the calibrate-
SAE model over a comparable regional model (Table 1).
Prediction error for giant salamanders was reduced by
86%, decreasing from 1.73 for the regional model to 0.24
for the calibrated SAE model (Table 1). Other species
showed a 77% to 82% reduction. Similarly, the SAE model
showed lower absolute prediction differences for each
species (Table 1). Both models had low bias. Prediction
errors for the regional and uncalibrated SAE models were
similar (Table 1).

Species responded differently to the stand- and
drainage-scale habitat variables (Table 2). Streamside

Table 2. Parameter estimates (Eq. 1) for models predicting amphibian occurrence in the Oregon Coast Range with stand- and drainage-scale
habitat variables.∗

Species

Pacific giant torrent larval adult
Parameter salamander salamander tailed frog tailed frog

Stand scale
β0 −0.182 (0.207) −3.359 (0.365) −2.504 (0.265) −4.477 (0.618)
β1 −0.164 (0.128) 0.589 (0.176) – 0.505 (0.261)
β2 −0.278 (0.112) 0.455 (0.182) −0.716 (0.144) –
β3 0.611 (0.207) 1.18 (0.341) 0.455 (0.297) 0.496 (0.554)

Drainage scale
γ1 0.753 (0.224) – – –
γ2 – −0.261 (0.284) – 1.081 (0.429)
γ3 – – – 0.661 (0.351)
γ5 0.284 (0.227) – −0.733 (0.228) –
γ6 1.142 (0.267) 0.514 (0.341) 0.805 (0.254) –
σαi 0.59 (0.166) 0.74 (0.239) 0.49 (0.160) 1.05 (0.429)

∗1 Parameter estimates are Bayesian posterior means, with posterior SDs in parentheses (−, variable did not contribute to the model fit and

was dropped).

buffers of older forest (stbuf) had a strong positive ef-
fect on all species. Aspect was the most consistent co-
variate. All species except adult tailed frogs showed
a positive response to cooler north aspects (Table 2).
Drainage-scale covariates indicative of disturbance, such
as slope and %young, were significant for each of the
species (Table 2). The variables heat and roads did not
improve model fit and were dropped. None of the stand-
or drainage-scale covariates were highly correlated (ex-
treme r = 0.30 and −0.46, respectively).

The model predicted considerable variability in am-
phibian occurrence across surveyed stands, despite ac-
counting for a moderate amount of the total deviance. For
giant salamanders, the mean probability of occurrence
was 0.496 and had a range of 0.07–0.94; other species
had similarly wide ranges. For torrent salamanders, larval
and adult tailed frogs, the highest probabilities were 0.48,
0.59, and 0.28, respectively, and the lowest were <0.01.

Fine-scale habitat variables measured at 2-m sample
points were ultimately excluded from the model. This
could lead to biased predictions if these were aggregated
at the stand-scale because variables such as fine sediment
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Figure 2. Predicted standard errors of local drainage

effects (devik ) in a new stand within drainages that

were unsurveyed (identified as uncalibrated model)

or with varying numbers of additional surveyed

stands within the drainage available for model

calibration. See “Simulations” for assigned habitat

covariate values and local survey information.

Standard errors were the SD of the posterior

distributions of devik. Abbreviations: PGS, Pacific

giant salamander; TS, torrent salamander; LTF larval

tailed frog; ATF, adult tailed frog.

or water velocity influence how species segregate at very
fine scales (<2 m) (Welsh & Lind 1996). The variance
components model showed that stand effects accounted
for between 3% and 31% of total variance, depending on
the fine-scale habitat variable. Similarly, drainage effects
accounted for between 4% and 25% of total variance.
The low-variance components indicated that fine-scale
habitat features were not aggregated at either scale. Fur-
thermore, including the fine-scale covariates in Eq. 1 did
not improve model fit, as judged by DIC.

Simulations

Even when only 1 or 2 additional surveyed stands were
available for calibrating the model, precision of the es-
timated local effects, devik, increased (Fig. 2). Because
none of the σ2

αiwere zero, it follows that precision of the
devik estimates will increase with higher numbers of sur-
veyed stands available for calibration within a drainage.
This pattern of increasing precision with more survey
information is axiomatic within SAE models, so it was
expected. Nevertheless, the utility of SAE models relies
on reducing error with a reasonable number of addi-
tional surveyed stands. As the number of surveyed stands
increases, the standard errors in Fig. 2 will reach an
asymptote that represents uncertainty in the respective
drainage-scale covariates and the drainage variance pa-

Figure 3. Posterior predictions from the model

contrasting inferences from regional versus local

(SAE) models. Shown are the predicted number of

occurrences of larval and adult tailed frogs at 10

sample points within a new stand. See “Simulations”

for assigned habitat covariate values and local survey

information. Predictions for the local model were

calibrated with 15 surveyed stands from within the

same drainage.

rameters (Table 2; posterior SDs). The cross-validation
also indicated that calibration resulted in a substantial
reduction in prediction error relative to an uncalibrated
SAE model (Table 1).

Inferential differences between the SAE and regional
models were demonstrated through predictions for new
stands with and without calibration data; the same stand-
and drainage-scale covariates as those in the simulations
were used. Species predictions were presented as the
probability of finding 0–10 amphibians at 10 randomly lo-
cated survey points within the stand. For example, when
devik was precisely estimated with the SAE model (i.e.,
with 15 stands), the probability of finding adult tailed
frogs in the stand was considerably higher than predicted
by the regional model (Fig. 3). For larval tailed frogs, in-
ferences were only slightly altered; the stand appeared to
be of high quality in both models. Obviously, field appli-
cations will vary depending on the actual survey data and
species investigated. To further illustrate regional and SAE
model differences, we used the models to predict torrent
salamander occurrence for a randomly selected stand in
drainages 1, 15, and 16, which represented average, high,
and low predicted local effects, respectively (Fig. 1a). Pre-
dictions were made with the measured habitat covariates
for the stand and drainage (Fig. 4). In general, calibrated
SAE and regional models were quite different. For in-
stance, the stand in drainage 15 appeared to be of much
higher quality in the SAE model than the regional model
for torrent salamanders (Fig. 4). Similar contrasting re-
sults were found for other species in drainages where
the estimated local effects were higher or lower than
average.
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Figure 4. Posterior predictions for torrent

salamanders from the regional and local (SAE)

models. Shown are the predicted number of

occurrences at 10 sample points for a randomly

selected stand within drainages 1, 15, and 16,

computed with the measured habitat covariates. The

local-model predictions were based on the estimated

local effects for the indicated drainages (devik).

Discussion

Problems with Regional Habitat Models

Random local effects (devik) explained a substantial por-
tion of the data beyond the drainage-scale covariates and
adequately represented these patchy populations. In con-
trast, regional models had no capacity to incorporate such
location-specific information, which decreased their pre-
cision for predicting patchy local populations. Such re-
gional models are still unbiased, but provide naive es-
timates when we recognize—but fail to incorporate—
significant local effects that are not explained by the
covariates. Patchy populations are common in wildlife
(Wiens 1976), particularly for specialist animals with
short dispersal distances. Small mammals (Bowman et al.
2000) and year-long resident birds develop patchy distri-
butions that arise from influences at longer time scales or
broader regional scales than captured by models. Site fi-
delity or social information may be other causes of patch-
iness for Neotropical songbirds (Betts et al. 2008). We
suspect that most amphibians have patchy, discontinu-
ous distributions such as those found here (Knapp et al.
2003).

The SAE models precisely predicted abundance in
these patchy populations and provided the information
necessary to make correct inferences. Nevertheless, SAE
models require a larger investment in surveys than re-
gional models, because local surveys are necessary to
predict local effects. The hierarchical methods can re-
duce the data requirements, but this will vary among

species and regions. How far SAE models can reduce pre-
diction error is not predictable a priori, but the reduction
will be greatest for relatively rare species with patchy dis-
tributions. Without survey data available for calibration,
the SAE and regional models performed similarly, but
relatively poorly. This was expected in patchy popula-
tions such as these and highlights the critical need for
good local information. Spatial modeling of populations
(Augustin et al. 1996; Knapp et al. 2003) is another ap-
proach to account for patchiness, but was not suitable in
this study due to the low number of sampled drainages
and sparse geographic coverage.

The Bayesian approach provides the information nec-
essary for risk assessment due to the probabilistic inter-
pretation of the results (Clark 2003). For wildlife this in-
formation includes a prediction of the population size or
habitat quality. For low-mobility species, such as amphib-
ians, stand- and drainage-scale habitat assessments may be
adequate, but if the populations are patchy, local abun-
dance estimates become more critical. The other cru-
cial piece of information for risk assessment is an assess-
ment of uncertainty in the estimate. Point estimates (i.e.,
means) of population size are commonly derived from
regional models, but without a way to assess their accu-
racy these have little utility for making location-specific
decisions (Clark 2003). Consider the scenario outlined
in Fig. 3 for adult tailed frog populations. The regional
model indicated that the stand was almost certainly of
low habitat quality, which suggests that concern for the
species would be low if the stand was scheduled for
harvest (but this stand may still be important within a
regional context). On the other hand, good local infor-
mation interjected substantial uncertainty into our pop-
ulation estimate. The local model allowed the possibility
(albeit slight) of a substantial adult tailed frog population,
and such uncertainty will alter the perceived risk and may
alter management decisions. The scenario could also be
reversed, where the local model shows low habitat qual-
ity with high certainty. Such scenarios were common in
the data set, particularly for rare species such as torrent
salamanders (Fig. 4; drainage 16).

Managers respond to perceived risk in a risk-adverse,
risk-neutral, or risk-tolerant way (e.g., Burgman 2005),
depending on many factors. In the previous scenario
(Fig. 3), provided with good local information the risk-
adverse manager would likely directly survey the stand in
question. Avoiding harvest operations or stipulating ex-
tensive streamside buffers might also be decided without
further surveys. Alternative choices based on the man-
ager’s risk attitude could be to assume low habitat quality
or low population risk (possibly due to nearby set-aside ar-
eas of high quality). Nevertheless, deciding among these
options cannot be considered with only point estimates
of species prevalence. The perception of risk arose from
the (slight) chance of high adult tailed frog populations,
not from the mean (i.e., point estimate) probability. Point
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estimates, often taken as fact, have little use in risk man-
agement.

Developing Local Habitat Models

Most wildlife management occurs at the stand or drainage
scales and thus requires a fine-scale resolution that only
model-based estimates can realistically provide (Thomp-
son 2002). Design-based inferences at the same resolution
are derived from extensive surveys and are usually cost-
prohibitive. In contrast, the stand and drainage covariates
we used could easily be estimated from aerial photos and
information from geographic information systems over
the entire Coast Range. Further incorporating local ef-
fects into the models would require more extensive sur-
veys. Efforts such as the Survey and Manage Program in
the U.S. Pacific Northwest (Olson 1999) have generated
large numbers of surveys across the region for numer-
ous plant and animal species. Although the coverage of
third-order drainages will be sparse, even a small number
of surveyed stands within a drainage can substantially re-
duce prediction error. Alternatively, changing the small-
areas to higher-order drainages would increase sample
size, with perhaps similar prediction ability.

Survey and Manage stands are not randomly chosen,
and this could result in different inferences regarding
amphibian populations than would a completely random-
ized sample design (Thompson 2002). A useful aspect
of model-based inference is that the local surveys do
not need to be randomly located, but relaxing the ran-
domization requirement depends on the realism of the
model to represent the population. More formally, it de-
pends on the data being independent under the assumed
model (Thompson 2002). In other words, stands within
the same drainage are expected to be more similar than
randomly chosen stands taken from the region (realized
through the drainage effects). Nevertheless, the model
assumes that stands within a drainage are independent,
conditioned on the measured stand-scale covariates. This
is unlikely to be strictly true, but we did not know how
strongly correlated the errors actually were. Randomiza-
tion of new surveys can guard against model failures and
is strongly suggested until a better assessment of the in-
dependence assumption can be made.

If previous survey information is available, we suggest
incorporating these data into the SAE models. Neverthe-
less, we suggest caution, particularly when using data
with different survey designs, key habitat types of inter-
est (e.g., riparian areas), season of sampling, or possi-
ble temporal trends following disturbance. For example,
the 2-m stream-length surveys we used are not compa-
rable to greater area- or time-intensive surveys, which
would likely have different inferences on probability of
occurrence (e.g., Kroll et al. 2008). Stream amphibians
also have low detectability, which is strongly related
to in-stream structure (coarse wood, percentage pools,

coarse sediment) (N. Chelgren, personal communica-
tion). We could not assess detectability because of the
sampling design, and this likely biased our model predic-
tions downward for stands and drainages with uniformly
high in-stream structure (MacKenzie et al. 2002). Sam-
pling within each drainage occurred on random dates
throughout the summer, which should have minimized
problems with seasonally changing detectability (Kroll
et al. 2008).

The SAE methods and local habitat models we de-
veloped complement the numerous amphibian ecology
and habitat studies in the region. We took a hierarchical
Bayesian approach, so our results did not match those
from the previous analysis (Stoddard & Hayes 2005). Nev-
ertheless, many of the inferences regarding habitat co-
variates were similar to those from Stoddard and Hayes
(2005) and related studies (e.g., Vesely & McComb 2002).
Such ecological studies provide the basis for robust pre-
dictions with model choice partly based on the ecology
and life history of the species (Burnham & Anderson
2002). Nevertheless, species–habitat studies are often re-
stricted to answering fine-scale (e.g., stream- or stand-
level) questions. Regional conservation of these species
requires a regional picture of the current population sta-
tus. For patchy populations, regional habitat models are
inadequate to provide this. The SAE models we developed
can help managers compile a regional view of the conser-
vation status for many species drainage by drainage and
thereby identify conservation gaps.
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